Source code for graphein.ppi.visualisation

"""Contains utilities for plotting PPI NetworkX graphs."""
# %%
# Graphein
# Author: Arian Jamasb <arian@jamasb.io>
# License: MIT
# Project Website: https://github.com/a-r-j/graphein
# Code Repository: https://github.com/a-r-j/graphein
from typing import List, Optional

import networkx as nx
import plotly.express as px
import plotly.graph_objects as go
from matplotlib.colors import to_rgb


[docs]def plot_ppi_graph( g: nx.Graph, colour_edges_by: str = "kind", with_labels: bool = True, **kwargs, ): """Plots a Protein-Protein Interaction Graph. Colours edges by kind. :param g: NetworkX graph of PPI network. :type g: nx.Graph :param colour_edges_by: Colour edges by this attribute. Currently, only supports 'kind', which colours edges by the source database, by default "kind" :param with_labels: Whether to show labels on nodes. Defaults to True. :type with_labels: bool, optional """ if colour_edges_by == "kind": edge_colors = [ "r" if g[u][v]["kind"] == {"string"} else "b" if g[u][v]["kind"] == {"biogrid"} else "y" for u, v in g.edges() ] else: raise ValueError( f"Edge colouring scheme: {colour_edges_by} not supported. Please use 'kind'" ) nx.draw(g, with_labels=with_labels, edge_color=edge_colors, **kwargs)
[docs]def plotly_ppi_graph( g: nx.Graph, layout: nx.layout = nx.layout.circular_layout, title: Optional[str] = None, show_labels: bool = False, node_size_multiplier: float = 5.0, node_colourscale: str = "Viridis", edge_colours: Optional[List[str]] = None, edge_opacity: float = 0.5, height: int = 500, width: int = 500, ): """Plots a PPI graph. :param g: PPI graph :type g: nx.Graph :param layout: Layout algorithm to use. Default is circular_layout. :type layout: nx.layout :param title: Title of the graph. Default is None. :type title: str, optional :param show_labels: If True, shows labels on nodes. Default is False. :type show_labels: bool :param node_size_multiplier: Multiplier for node size. Default is 5.0. :type node_size_multiplier: float :param node_colourscale: Colour scale to use for node colours. Default is "Viridis". Options: 'Greys' | 'YlGnBu' | 'Greens' | 'YlOrRd' | 'Bluered' | 'RdBu' | 'Reds' | 'Blues' | 'Picnic' | 'Rainbow' | 'Portland' | 'Jet' | 'Hot' | 'Blackbody' | 'Earth' | 'Electric' | 'Viridis' | :type node_colourscale: str :param edge_colours: List of colours (hexcode) to use for edges. Default is None (px.colours.qualitative.T10). :type edge_colours: List[str], optional :param edge_opacity: Opacity of edges. Default is 0.5. :type edge_opacity: float :param height: Height of the plot. Default is 500. :type height: int :param width: Width of the plot. Default is 500. :type width: int :return: Plotly figure of PPI Network :rtype: go.Figure """ if edge_colours is None: edge_colours = px.colors.qualitative.T10 edge_colours = [ f"rgba{tuple(list(to_rgb(c)) + [edge_opacity])}" for c in edge_colours ] # Set positions nx.set_node_attributes(g, layout(g), "pos") # Get node and edge traces node_trace = get_node_trace(g, node_size_multiplier, node_colourscale) edge_trace = get_edge_trace(g, edge_colours) traces = [node_trace] + edge_trace # Get node labels if using them. if show_labels: text_trace = go.Scatter( x=node_trace["x"], y=node_trace["y"], mode="text", text=list(g.nodes()), textposition="bottom center", hoverinfo="text", ) traces.append(text_trace) # Assemble plot from traces return go.Figure( data=traces, layout=go.Layout( title=title, titlefont_size=16, showlegend=False, width=width, height=height, hovermode="closest", margin=dict(b=20, l=5, r=5, t=40), xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False), ), )
[docs]def get_node_trace( g: nx.Graph, node_size_multiplier: float, node_colourscale: str = "Viridis" ) -> go.Scatter: """Produces the node trace for the plotly plot. :param g: PPI graph with ['pos'] added to the nodes (eg via nx.layout function) :type g: nx.Graph :param node_size_multiplier: Multiplier for node size. Default is 5.0. :type node_size_multiplier: float :param node_colourscale: Colourscale to use for the nodes, defaults to "Viridis" :type node_colourscale: str, optional :return: Node trace for plotly plot :rtype: go.Scatter """ node_x = [] node_y = [] node_size = [] for n in g.nodes(): x, y = g.nodes[n]["pos"] node_x.append(x) node_y.append(y) node_size.append(g.degree(n) * node_size_multiplier) node_trace = go.Scatter( x=node_x, y=node_y, mode="markers", hoverinfo="text", marker=dict( showscale=False, colorscale=node_colourscale, reversescale=True, color=[], size=node_size, colorbar=dict( thickness=15, title="Node Connections", xanchor="left", titleside="right", ), line_width=2, ), ) node_text = list(g.nodes()) node_trace.marker.color = node_size node_trace.text = node_text return node_trace
[docs]def get_edge_trace( g: nx.Graph, edge_colours: Optional[List[str]] = None, ) -> List[go.Scatter]: """Gets edge traces from PPI graph. Returns a list of traces enabling edge colours to be set individually. :param g: _description_ :type g: nx.Graph :return: _description_ :rtype: List[go.Scatter] """ if edge_colours is None: edge_colours = ["red", "blue", "yellow"] traces = [] for u, v, d in g.edges(data=True): # Get positions x0, y0 = g.nodes[u]["pos"] x1, y1 = g.nodes[v]["pos"] # Assign colour if d["kind"] == {"string"}: colour = edge_colours[0] elif d["kind"] == {"biogrid"}: colour = edge_colours[1] else: colour = edge_colours[2] edge_trace = go.Scatter( line=dict(width=2, color=colour), hoverinfo="text", x=(x0, x1), y=(y0, y1), mode="lines", text=[ " / ".join(list(edge_type)) for edge_type in g[u][v]["kind"] ], ) traces.append(edge_trace) return traces
if __name__ == "__main__": from functools import partial from graphein.ppi.config import PPIGraphConfig from graphein.ppi.edges import add_biogrid_edges, add_string_edges from graphein.ppi.graphs import compute_ppi_graph config = PPIGraphConfig() protein_list = [ "CDC42", "CDK1", "KIF23", "PLK1", "RAC2", "RACGAP1", "RHOA", "RHOB", ] g = compute_ppi_graph( protein_list=protein_list, edge_construction_funcs=[ partial(add_string_edges), partial(add_biogrid_edges), ], ) plot_ppi_graph(g) plotly_ppi_graph(g) # %%